
SEMI-ANNUAL STATUS REPORT

NASA Cooperative Agreement NCC-I-126

THE EFFECTS OF THE INTERACTION

OF POLYMERIC MATERIALS WITH THE SPACE ENVIRONMENT

January i, 1991 to June 15, 1991
<

Principal Investigators:

Grantee Institution:

RICHARD L. KIEFER

ROBERT A. ORWOLL

THE COLLEGEOF WILLIAM AND MARY

WILLIAMSBURG, VIRGINIA 23185

(_!ASA-C_-ILiS659) THE _-FffCTS OF THF
INT!£RACTI!-3N C_F Pi3LYMCRIC MATERIALS WITH TH_

SPACi! _',;!V!i<_]_!:'_::_T Semi_annu_]l Status i_eport,

I J_n. - i::_ aun. I'_91 (Col|eqe of Wi] | iam

and _-,!_.}:_ry) 2F3 i) CSCL lie G3/27

N9 1-2 73 !_i



2

PRE'CEDIHG PAGE BLA_'_K NOT FILMED

THE EFFECTS OF THE INTERACTION

OF POLYMERIC MATERIAI_ WITH THE SPACE ENVIRONMENT

Introduction

Polymeric materials in low earth orbit (LEO, 300 to 500 km) will be

exposed to a harmful enviroriment mainly due to atomic oxygen and ultraviolet

radiation. In geosynchronous earth orbit (GEO, 36,000 km), the major

hazards to such materials are energetic charged particles and ultraviolet

radiation. We report here theprogress of our studies on the effects of

these hazards on three materials, a polyetherimide, a polyimide, and an

epoxy adhesive.

Atomic oxygen (AO) is formed from the dissociation of molecular oxygen,

02, and ozone, 03, by ultraviolet radiation of short wavelength (< 200 nm)

The A0 concentration varies with the latitude, solar cycle, season of the

year, and local solar time. It is the predominant chemical species at LEO
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altitudes, varying in concentration from I0 -I0 atoms cm at 300 km to
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I0 -i0 atoms cm at 500 km. The particle density is multiplied by the

speed of a satellite to give the particle flux incident on the forward

_I

facing surfaces. A satellite in LEO with a typical speed of 8 km s will
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undergo I0 - i0 collisions cm s of A0 with its forward facing

surfaces. Atomic oxygen is known to cause surface erosion on polymeric

materials.

Ultraviolet radiation in both LEO and GEO has an energy flux of 0.14

_2 _i

joules cm s In GEO, an additional radiation environment is caused by

energetic charged particles trapped by the earth's magnetic field. The

radiation consists primarily of electrons and protons, each with a flux of

8 _2 _I

I0 particles cm s Polymeric materials subjected to ultraviolet
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radiation and/or energetic charged particles are known to suffer

degradation ofproperties due to both chain sission and crosslinking.

a

Polyetherimide Studies

Films of a polyetherimide containing up to 25 percent by weight of bis-

(triphenyltin) oxide (BTO) were prepared by evaporation of the solvent from

a solution containing both materials as solutes. The repeat unit of the

polyetherimide and the structural formula of BTO are shown in Figs. I and 2.

The polymer was obtained commercially and is sold under the General Electric

tradename of Ultem. The effects of atomic oxygen on these films were

simulated in the oxygen atmosphere of a radio-frequency glow-discharge

chamber. Typical results are shown in Fig. 3, where the degradation rates

of polyetherimide films with and without 20% BTO are plotted as a function

of exposure time. After about 90 minutes of exposure, a layer of tin oxide

has formed on the surface of the film and after 200 minutes of exposure, the

erosion rate drops to approximately two thirds that of the undoped polymer.

(Fifty minutes in the discharge chamber corresponds to approximately I month

in orbit at 500 km.)

Films of the polyetherimide containing 10% BTO were exposed to either

I00 keV electrons or ultraviolet radiation. The difference in the infrared

absorbance spectrum of a film taken before and after exposure is plotted in

Fig. 4 as a function of wavenumber. Exposure to ultraviolet radiation for

170 hours at 1.5 suns produces no change in the infrared spectrum of the
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film. However, exposure to 5 x i0 rads of I00 keV electrons produces a

noticable change at 1750 wavenumbers corresponding to a decrease in the

concentration of carbonyl groups (C=O) after exposure. Similar differences

in the infrared spectra were obtained when films of the pure polyetherimide

were exposed to energetic electrons or ultraviolet radiation. The

uv/visible spectrum was also taken for films exposed to these radiations.

Figures 5, 6, 7, and 8 show the spectra before and after irradiation. It is

important to note that the transparency in the visible region (400 to 700
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nm) is the same for the pure polyetherimide and films of the material doped

with 10% BT0.

These results show that, when BT0 is added to the polyetherimide, the

rate of erosion with atomic oxygen is reduced significantly over a period of

I0 hours. However, the BT0 additive does not reduce the resistance of the

polyetherimide to ultraviolet radiation, nor does it change the effects due

to exposure to energetic electrons.

Since the polyetherimide is readily soluble in several common solvents,

we studied the possibility of spraying a solution of the BT0 doped material

onto surfaces as an atomic-oxygen resistant film. A chloroform solution of

the polyetherimide and BTO was placed in a small sprayer (Sure Shot Model C,

Milwaukee Sprayer Mfg. Co.). The sprayer was pressurized to about 90 psi

with compressed nitrogen gas, and a thin, uniform film was applied to a

glass plate. The film was dried in an oven and removed from the plate with

water. The film was very thin and fragile making it extremely difficult to

study, however, one sample was exposed to ultraviolet radiation. The

infrared and uv/visible spectra were taken before and after. The sprayed

film showed the same resistance to ultraviolet radiation as the thicker

films.

Polyimide Studies

Studies have been initiated on a polyimid e formed by the reaction of

pyromellitic dianhydride and di-(4-aminophenyl) ether and sold commercially

i
with the duPont trade name Kapton. Typical of most polyimides, Kapton is

infusable and insoluble. Our purpose here was to introduce A0-resistant

additives during the synthesis at a point where the additive is easily mixed

with the soluble polyimide precursor. The same compounds tested with the

polyetherimide were tested here. It was found that five compounds were

soluble: octaphenylcyclotetrasiloxane (0PCTS), octamethylcyclotetrasiloxane



(OMCTS),decamethyltetrasiloxane (DMTS), diphenylmethylsilane (DPMS), and

bis-(triphenyltin) oxide (BTO).

Films of the polyamic acid were formed on a clean glass plate with a
doctor blade according to established procedure. The film was then

2
thermally imidized with a temperature ramp given in the literature. All
films produced in this fashion were clear and of good quality. Films doped
with BTOwere madewith concentrations of 5_, 3_, and I_ (w/w) BTO. It was

found that the films containing 5_ BTOwere brittle and could not be pulled
from the glass plate, however, films containing the lower concentrations
were more flexible and could be separated easily from the plate. Two
thicknesses of films were made, 0.5-1.0 mil and 2.5-3.0 mil. In addition,

thin films (0.5-1.0 mil) containing 3_ (w/w) OPCTSwere also made

Someinitial atomic oxygen exposures have been performed with the
synthesized films both pure and doped with BTO. Exposure periods of ninety
minutes were chosen so that comparisons with previous studies on the

polyetherimide described above could be made. A polyimide film doped with
i_ BTOcompletely disappeared during the first ninety minute period, while a
pure polyimide film did not disappear until the second ninety minute period.

In an exposure with the pure synthesized film and pure commercial film, it
was found that the synthesized film eroded muchfaster. This result is
similar to our findings in previous studies with polyetherimide and
polysulfone films. We beleive that the surface characteristics are

different between our films drawn on a glass plate and the commercial films
which are extruded.

Epoxy Adhesive Studies

Our work has focused on an epoxy adhesive manufactured by Dexter-Hysol

and sold as EA934NA. Previous studies had shown that this material had very

little resistance to ultraviolet radiation. Thus, it was a good material in



which to test various ultraviolet absorbers. Ironically, the material was
muchmore resistant to atomic oxygen than any other epoxy material tested.

The ultraviolet radiation studies were carried out in a small vacuum

chamber at the NASALangley Research Center. The chambercan be evacuated
_8

to a pressure of I0 torr. An Inficon IQ 200 mass spectrometer is

incorporated in the chamber so that volatile products can be monitored.

Ultraviolet radiation enters the chamber through a quartz window and is

supplied by an Oriel 6141 system with a i000 watt xenon-arc lamp. The

intensity of radiation at the surface of the sample is approximately 1.5

suns.

Samples of pure EA934NA immediately decomposed when exposed to

ultraviolet radiation. So many volatile products were emitted that within

30 seconds the pressure in the vacuum chamber rose by two orders of

magnitude. Large peaks appeared in the mass spectrum at mass numbers 18,

28, and 44. After about I0 minutes, the rate of emission of volatile

products decreased and the pressure in the vacuum chamber went down. Since

the composition of the material is proprietary information, no attempt was

made to suggest any reaction mechanism.

Samples of the epoxy material were made incorporating two different

ultraviolet absorbing compounds, benzophenone and nickel acetylacetonate.

In both cases, i0% (w/w) samples were made. When exposed to ultraviolet

radiation, these samples decomposed more rapidly than the pure material. In

J

both cases, additional peaks appeared in the mass spectrum which could be

correlated with decomposition products of the added compounds. Possibly,

the added materials accumulated at the surface during the cure of the epoxy

adhesive. These materials would probably degrade more quickly than the

epoxy adhesive thus causing the increase in volatile products.
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REPEAT UNIT OF THE POLYETHERIMIDE

Figure I. The repeat unit of-the polyetherimide.

BTO

Figure 2. The structural formula of bis(triphenyl tin) oxide or BTO.



COMPARISON OF RATES OF EROSION IN

ATOMIC OXYGEN
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Figure 3. Erosion rates of films in atomic oxygen. A comparison of

polyetherimide films pure and with 20_ BTO.
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Change in Absorbance
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EXPOSURES OF POLYETHERIMIDE / BTO FILMS
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Figure 4. The difference in the infrared absorbance spectra of

polyetherimide/lO_ BTO films taken before and after exposure

to i00 keV electrons and ultraviolet radiation.



11

100

BASELINE

PURE POLYETHERIMIDE
170 HOUR UV EXPOSURE AT 1.5 SUNS

I I I

UVIRRADIATED

_T 50

40-

:to

0
325 350 375 400 425 450 475 500

WAVELENGTH(NI4)

i

525 550 575

Figure 5. The uv/visible .spectra of a pure polyetherimide film before and

after exposure to ultraviolet radiation.
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Figure 6. The uv/visible spectra of a polyetherimide film with 10% BTO

before and after exposure to ultraviolet radiation.
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Figure 7. The uv/visible spectra of a pure polyetherimide film before and

after exposure to i00 keV electrons.
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Figure 8. The uv/visible spectra of a polyetherimide film with I0_ BTO

before and after exposure to I00 keV electrons.


